2015-03-25 14:47:26 +08:00
|
|
|
package xls
|
|
|
|
|
|
|
|
import (
|
|
|
|
"math"
|
|
|
|
"time"
|
|
|
|
)
|
|
|
|
|
|
|
|
const MJD_0 float64 = 2400000.5
|
|
|
|
const MJD_JD2000 float64 = 51544.5
|
|
|
|
|
|
|
|
func shiftJulianToNoon(julianDays, julianFraction float64) (float64, float64) {
|
|
|
|
switch {
|
|
|
|
case -0.5 < julianFraction && julianFraction < 0.5:
|
|
|
|
julianFraction += 0.5
|
|
|
|
case julianFraction >= 0.5:
|
|
|
|
julianDays += 1
|
|
|
|
julianFraction -= 0.5
|
|
|
|
case julianFraction <= -0.5:
|
|
|
|
julianDays -= 1
|
|
|
|
julianFraction += 1.5
|
|
|
|
}
|
|
|
|
return julianDays, julianFraction
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the integer values for hour, minutes, seconds and
|
|
|
|
// nanoseconds that comprised a given fraction of a day.
|
|
|
|
func fractionOfADay(fraction float64) (hours, minutes, seconds, nanoseconds int) {
|
|
|
|
f := 5184000000000000 * fraction
|
|
|
|
nanoseconds = int(math.Mod(f, 1000000000))
|
|
|
|
f = f / 1000000000
|
|
|
|
seconds = int(math.Mod(f, 60))
|
|
|
|
f = f / 3600
|
|
|
|
minutes = int(math.Mod(f, 60))
|
|
|
|
f = f / 60
|
|
|
|
hours = int(f)
|
|
|
|
return hours, minutes, seconds, nanoseconds
|
|
|
|
}
|
|
|
|
|
|
|
|
func julianDateToGregorianTime(part1, part2 float64) time.Time {
|
|
|
|
part1I, part1F := math.Modf(part1)
|
|
|
|
part2I, part2F := math.Modf(part2)
|
|
|
|
julianDays := part1I + part2I
|
|
|
|
julianFraction := part1F + part2F
|
|
|
|
julianDays, julianFraction = shiftJulianToNoon(julianDays, julianFraction)
|
|
|
|
day, month, year := doTheFliegelAndVanFlandernAlgorithm(int(julianDays))
|
|
|
|
hours, minutes, seconds, nanoseconds := fractionOfADay(julianFraction)
|
|
|
|
return time.Date(year, time.Month(month), day, hours, minutes, seconds, nanoseconds, time.UTC)
|
|
|
|
}
|
|
|
|
|
|
|
|
// By this point generations of programmers have repeated the
|
|
|
|
// algorithm sent to the editor of "Communications of the ACM" in 1968
|
|
|
|
// (published in CACM, volume 11, number 10, October 1968, p.657).
|
|
|
|
// None of those programmers seems to have found it necessary to
|
|
|
|
// explain the constants or variable names set out by Henry F. Fliegel
|
|
|
|
// and Thomas C. Van Flandern. Maybe one day I'll buy that jounal and
|
|
|
|
// expand an explanation here - that day is not today.
|
|
|
|
func doTheFliegelAndVanFlandernAlgorithm(jd int) (day, month, year int) {
|
|
|
|
l := jd + 68569
|
|
|
|
n := (4 * l) / 146097
|
|
|
|
l = l - (146097*n+3)/4
|
|
|
|
i := (4000 * (l + 1)) / 1461001
|
|
|
|
l = l - (1461*i)/4 + 31
|
|
|
|
j := (80 * l) / 2447
|
|
|
|
d := l - (2447*j)/80
|
|
|
|
l = j / 11
|
|
|
|
m := j + 2 - (12 * l)
|
|
|
|
y := 100*(n-49) + i + l
|
|
|
|
return d, m, y
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert an excelTime representation (stored as a floating point number) to a time.Time.
|
2015-09-30 11:17:25 +08:00
|
|
|
func timeFromExcelTime(excelTime float64, date1904 bool) time.Time {
|
2015-03-25 14:47:26 +08:00
|
|
|
var date time.Time
|
|
|
|
var intPart int64 = int64(excelTime)
|
|
|
|
// Excel uses Julian dates prior to March 1st 1900, and
|
|
|
|
// Gregorian thereafter.
|
|
|
|
if intPart <= 61 {
|
|
|
|
const OFFSET1900 = 15018.0
|
|
|
|
const OFFSET1904 = 16480.0
|
|
|
|
var date time.Time
|
|
|
|
if date1904 {
|
|
|
|
date = julianDateToGregorianTime(MJD_0+OFFSET1904, excelTime)
|
|
|
|
} else {
|
|
|
|
date = julianDateToGregorianTime(MJD_0+OFFSET1900, excelTime)
|
|
|
|
}
|
|
|
|
return date
|
|
|
|
}
|
|
|
|
var floatPart float64 = excelTime - float64(intPart)
|
|
|
|
var dayNanoSeconds float64 = 24 * 60 * 60 * 1000 * 1000 * 1000
|
|
|
|
if date1904 {
|
|
|
|
date = time.Date(1904, 1, 1, 0, 0, 0, 0, time.UTC)
|
|
|
|
} else {
|
|
|
|
date = time.Date(1899, 12, 30, 0, 0, 0, 0, time.UTC)
|
|
|
|
}
|
|
|
|
durationDays := time.Duration(intPart) * time.Hour * 24
|
|
|
|
durationPart := time.Duration(dayNanoSeconds * floatPart)
|
|
|
|
return date.Add(durationDays).Add(durationPart)
|
|
|
|
}
|