All square roots are periodic when written as continued fractions and can be written in the form: ~~~ sqrt(N) = a0 + 1 / (a1 + 1 / (a2 + 1 / (a3 + ... ))) ~~~ For example, let us consider `sqrt(23)`: ~~~ sqrt(23) = 4 + sqrt(23) - 4 = 4 + 1 / ( 1 / ( sqrt(23) - 4 ) ) = 4 + 1 / ( 1 + ( sqrt(23) - 3 ) / 7) ~~~ If we continue we would get the following expansion: ~~~ sqrt(23) = 4 + 1/(1 + 1/(3 + 1/(1 + 1/(8 + ... )))) ~~~ The process can be summarised as follows: a | Step 1 | Step 1 |Step 1 -----|------------------------|-------------------------|---------------------- `a0` | `4`, `1/(sqrt(23) - 4` | `1*(sqrt(23) + 4) / 7` | `1 + (sqrt(23) - 3)/7` `a1` | `1`, `7/(sqrt(23) - 3` | `7*(sqrt(23) + 3) / 14` | `3 + (sqrt(23) - 3)/2` `a2` | `3`, `2/(sqrt(23) - 3` | `2*(sqrt(23) + 3) / 14` | `1 + (sqrt(23) - 4)/7` `a3` | `1`, `7/(sqrt(23) - 4` | `7*(sqrt(23) + 4) / 7` | `8 + (sqrt(23) - 4)/1` `a4` | `8`, `1/(sqrt(23) - 4` | `1*(sqrt(23) + 4) / 7` | `1 + (sqrt(23) - 3)/7` `a5` | `1`, `7/(sqrt(23) - 3` | `7*(sqrt(23) + 3) / 14` | `3 + (sqrt(23) - 3)/2` `a6` | `3`, `2/(sqrt(23) - 3` | `2*(sqrt(23) + 3) / 14` | `1 + (sqrt(23) - 4)/7` `a7` | `1`, `7/(sqrt(23) - 4` | `7*(sqrt(23) + 4) / 7` | `8 + (sqrt(23) - 4)/1` It can be seen that the sequence is repeating. For conciseness, we use the notation `sqrt(23) = [4;(1,3,1,8)]`, to indicate that the block `(1,3,1,8)` repeats indefinitely. The first ten continued fraction representations of (irrational) square roots are: ~~~ sqrt( 2) = [1;(2)], period=1 sqrt( 3) = [1;(1,2)], period=2 sqrt( 5) = [2;(4)], period=1 sqrt( 6) = [2;(2,4)], period=2 sqrt( 7) = [2;(1,1,1,4)], period=4 sqrt( 8) = [2;(1,4)], period=2 sqrt(10) = [3;(6)], period=1 sqrt(11) = [3;(3,6)], period=2 sqrt(12) = [3;(2,6)], period=2 sqrt(13) = [3;(1,1,1,1,6)], period=5 ~~~ Exactly four continued fractions, for `N <= 13`, have an odd period. How many continued fractions for `N <= 10000` have an odd period?