2.0 KiB
2.0 KiB
All square roots are periodic when written as continued fractions and can be written in the form:
sqrt(N) = a0 + 1 / (a1 + 1 / (a2 + 1 / (a3 + ... )))
For example, let us consider sqrt(23)
:
sqrt(23)
= 4 + sqrt(23) - 4
= 4 + 1 / ( 1 / ( sqrt(23) - 4 ) )
= 4 + 1 / ( 1 + ( sqrt(23) - 3 ) / 7)
If we continue we would get the following expansion:
sqrt(23) = 4 + 1/(1 + 1/(3 + 1/(1 + 1/(8 + ... ))))
The process can be summarised as follows:
a | Step 1 | Step 1 | Step 1 |
---|---|---|---|
a0 |
4 , 1/(sqrt(23) - 4 |
1*(sqrt(23) + 4) / 7 |
1 + (sqrt(23) - 3)/7 |
a1 |
1 , 7/(sqrt(23) - 3 |
7*(sqrt(23) + 3) / 14 |
3 + (sqrt(23) - 3)/2 |
a2 |
3 , 2/(sqrt(23) - 3 |
2*(sqrt(23) + 3) / 14 |
1 + (sqrt(23) - 4)/7 |
a3 |
1 , 7/(sqrt(23) - 4 |
7*(sqrt(23) + 4) / 7 |
8 + (sqrt(23) - 4)/1 |
a4 |
8 , 1/(sqrt(23) - 4 |
1*(sqrt(23) + 4) / 7 |
1 + (sqrt(23) - 3)/7 |
a5 |
1 , 7/(sqrt(23) - 3 |
7*(sqrt(23) + 3) / 14 |
3 + (sqrt(23) - 3)/2 |
a6 |
3 , 2/(sqrt(23) - 3 |
2*(sqrt(23) + 3) / 14 |
1 + (sqrt(23) - 4)/7 |
a7 |
1 , 7/(sqrt(23) - 4 |
7*(sqrt(23) + 4) / 7 |
8 + (sqrt(23) - 4)/1 |
It can be seen that the sequence is repeating. For conciseness, we use the notation sqrt(23) = [4;(1,3,1,8)]
, to indicate that the block (1,3,1,8)
repeats indefinitely.
The first ten continued fraction representations of (irrational) square roots are:
sqrt( 2) = [1;(2)], period=1
sqrt( 3) = [1;(1,2)], period=2
sqrt( 5) = [2;(4)], period=1
sqrt( 6) = [2;(2,4)], period=2
sqrt( 7) = [2;(1,1,1,4)], period=4
sqrt( 8) = [2;(1,4)], period=2
sqrt(10) = [3;(6)], period=1
sqrt(11) = [3;(3,6)], period=2
sqrt(12) = [3;(2,6)], period=2
sqrt(13) = [3;(1,1,1,1,6)], period=5
Exactly four continued fractions, for N <= 13
, have an odd period.
How many continued fractions for N <= 10000
have an odd period?