1
0
www.mikescher.com/www/statics/euler/Euler_Problem-029_description.md

516 B

Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:

2^2=4,  2^3=8,   2^4=16,  2^5=32
3^2=9,  3^3=27,  3^4=81,  3^5=243
4^2=16, 4^3=64,  4^4=256, 4^5=1024
5^2=25, 5^3=125, 5^4=625, 5^5=3125

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

How many distinct terms are in the sequence generated by ab for 2 <= a <= 100 and 2 <= b <= 100?